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Abstract: 

Multilingual table extraction remains a challenging problem in document understanding due to wide 

variations in table layouts, script-specific characteristics, scanning noise, and the scarcity of high-quality 

labeled data for non-English documents. Traditional heuristic-driven systems, such as the Table Analysis 

and Recognition Tool (TATR), are often limited in their ability to generalize across diverse scripts and 

irregular table structures, leading to suboptimal performance in real-world multilingual settings. In this 

work, we investigate deep learning–based row detection as a language-agnostic alternative for multilingual 

Table Structure Recognition (TSR). 

Using the Multilingual Scanned and Scene Table Structure Recognition (MUSTARD) dataset, which 

spans multiple scripts and languages, we evaluate state-of-the-art object detection models YOLO and 

Faster R-CNN for robust row-level structure detection. These models are assessed across multiple 

dimensions, including detection accuracy, inference latency, and resilience to script and layout variability. 

To enable holistic and structured evaluation beyond bounding-box accuracy, we employ TEDS-S, which 

jointly measures structural alignment and content fidelity, thereby capturing both spatial correctness and 

semantic consistency of detected table rows. 

Experimental results demonstrate that YOLO achieves superior real-time performance with low latency, 

making it suitable for large-scale and on-device deployments, while Faster R-CNN consistently delivers 

higher precision in complex and densely structured tables. Furthermore, we explore a hybrid YOLO–

Faster R-CNN cascade that leverages the speed of YOLO for coarse row localization and the precision of 

Faster R-CNN for refinement, resulting in improved overall TEDS-S scores across multilingual scripts. 

The findings highlight that deep learning–based row detection, when combined with structure-aware 

evaluation metrics, provides a scalable and script-agnostic alternative to traditional rule-based TSR 

systems, advancing multilingual table understanding beyond TATR. 

 

Keywords: Multilingual Table Extraction, Table Structure Recognition, Row Detection, YOLO, Faster 

R-CNN, MUSTARD Dataset, TEDS-S, Deep Learning, Document Understanding, Multiscript 

Tables,Table Layout Analysis, Structural Alignment. 

 

INTRODUCTION 

Tables are a fundamental component of document images, serving as an effective medium for organizing 

and presenting complex information in a structured and visually interpretable form. Accurate table 

extraction is therefore a critical task in document image analysis, underpinning a wide range of 

downstream applications such as optical character recognition (OCR), information retrieval, table 

reconstruction, and large-scale document understanding. Financial reports, government records, scientific 

articles, and multilingual public datasets rely heavily on tabular data, making robust Table Structure 

Recognition (TSR) an essential research problem. 

Table structures vary widely in complexity, ranging from simple grids with uniform rows and columns to 

highly irregular layouts featuring merged cells, nested headers, and hierarchical arrangements. This 
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diversity is further amplified in multilingual documents, where tables may contain different scripts such 

as Devanagari, Arabic, Latin, and others, often within the same page. Variations in font styles, writing 

direction, alignment, border visibility, and scanning quality introduce additional challenges, particularly 

in scanned and scene-text documents. These factors make multilingual table extraction substantially more 

difficult than its monolingual counterpart. 

Understanding table structure typically involves two complementary notions: physical structure and 

logical structure. The physical structure corresponds to the explicit spatial layout of the table, including 

the detection of rows, columns, and cells, which are commonly represented using bounding boxes. Logical 

structure, on the other hand, captures the underlying topology of the table, such as cell adjacency 

relationships, spanning cells, and hierarchical organization, and is often expressed using representations 

like HTML or \LaTeX. Accurate recovery of the physical structure is a prerequisite for reliable logical 

structure inference and effective table reconstruction. 

Traditional table extraction systems, such as the Table Analysis and Recognition Tool (TATR), rely 

heavily on heuristic rules and handcrafted features to detect table components. While these approaches 

can perform reasonably well on clean, Latin-script tables with regular layouts, they struggle to generalize 

across multilingual documents and irregular table designs. Script-specific variations, broken lines, noisy 

scans, and inconsistent spacing often lead to fragmented or missed row detections, limiting their 

applicability in real-world multilingual settings. 

Recent advances in deep learning, particularly in object detection, offer promising alternatives to heuristic-

based approaches for TSR. Models such as YOLO and Faster R-CNN have demonstrated strong 

performance in detecting structured visual elements under challenging conditions, making them well-

suited for physical table structure analysis. By framing row detection as an object detection problem, these 

models can learn robust, script-agnostic representations that generalize across diverse table layouts and 

languages. 

In this work, we focus on multilingual row detection as a foundational step toward robust TSR beyond 

TATR. Using the Multilingual Scanned and Scene Table Structure Recognition (MUSTARD) dataset, we 

evaluate YOLO and Faster R-CNN in terms of detection accuracy, inference efficiency, and robustness to 

script and layout variability. To move beyond purely geometric evaluation, we employ TEDS-S, which 

jointly assesses structural alignment and content fidelity, enabling a more holistic measurement of table 

structure quality. Our study demonstrates that deep learning–based row detection, combined with 

structure-aware evaluation metrics, provides an effective and scalable solution for multilingual TSR. 

 

Figure 1: TEDS-S score versus latency for FinTabNet and MUSTARD datasets, with each model 

annotated. 
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Figure 2: Sample table from MUSTARD 

 
 

Image-to-sequence (Im2Seq) approaches have traditionally dominated Table Structure Recognition 

(TSR), generating logical table sequences from table images. While effective for English-centric datasets, 

such models face significant limitations when applied to multilingual tables with diverse scripts, irregular 

layouts, and noisy scans. They often fail to generalize across different scripts, rely on large HTML-based 

vocabularies for decoding, and require extensive labeled data, which is scarce for non-English tables. 

These shortcomings highlight the need for row-level detection methods that are script-agnostic and 

computationally efficient. 

 

To address these challenges, we propose a deep learning–based approach for multilingual row detection 

using object detection models, specifically YOLO and Faster R-CNN, evaluated on a dataset containing 

tables across multiple scripts and modalities. Unlike Im2Seq methods, object detection–based row 

detection treats rows as bounding boxes, focusing on the physical structure of tables, which is a critical 

prerequisite for logical structure recovery. YOLO provides fast inference and real-time capabilities, 

whereas Faster R-CNN delivers higher precision in detecting complex or densely structured rows. 

Combining these models in a hybrid cascade allows leveraging the speed of YOLO for coarse row 

localization and the accuracy of Faster R-CNN for refinement. 

 

To enable a holistic assessment of table structure, we use TEDS-S, a metric that jointly measures structural 

alignment and content fidelity, rather than evaluating only bounding-box overlaps. This metric captures 

both the spatial correctness of detected rows and their semantic consistency, providing a robust evaluation 

for multilingual TSR tasks. Our experiments demonstrate that object detection–based row detection 

generalizes better across scripts, handles irregular layouts, and reduces the dependence on large labeled 

datasets compared to traditional Im2Seq methods. 

 

In summary, this work contributes the following: 

● Multilingual Row Detection Framework: We present an approach combining YOLO and Faster R-

CNN for fast, accurate, and script-agnostic detection of table rows in multilingual documents. 

● Hybrid Detection Cascade: We propose a hybrid YOLO–Faster R-CNN cascade that balances 

inference speed with precision for complex table structures. 

● TEDS-S Evaluation: We adopt TEDS-S for comprehensive evaluation of structural and content 

fidelity, demonstrating the effectiveness of object detection–based TSR across multiple scripts. 

● Dataset Experiments: We evaluate our approach on a multilingual dataset, highlighting 

improvements over conventional heuristic methods like TATR and showing competitive 

performance compared to Im2Seq TSR models. 

 

The rest of the paper is structured as follows: the related work is reviewed, followed by methodology and 

model architectures. Experimental setup and evaluation metrics are then presented, followed by results 

and discussion. The paper concludes with key insights and directions for future research. 
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Related Literature 

Table Structure Recognition (TSR) aims to extract both the physical layout and logical structure of tables 

from document images. Traditional methods often struggle with multilingual tables, irregular layouts, and 

noisy scans, highlighting the need for robust, script-agnostic approaches. 

Object Detection–Based Methods: Object detection models have become central to detecting table 

components such as rows and cells. Architectures like Faster R-CNN, Mask R-CNN, Cascade R-CNN, 

and YOLO have been widely applied to localize table elements. More recently, transformer-based 

detectors such as DETR and models like TableFormer leverage bounding-box predictions to determine 

physical structures efficiently. These approaches excel at detecting rows and cells, forming the basis for 

downstream logical structure reconstruction. However, performance heavily depends on the accuracy of 

the detection stage—errors in row or cell localization can propagate to logical structure predictions. 

Multilingual Challenges: Most existing TSR methods, including Im2Seq approaches, are trained on 

English-language datasets, which limits their generalization to tables in other scripts. Pretrained models 

often capture script- or font-specific features, leading to incorrect row detection in multilingual contexts. 

Object detection–based methods, especially when combined with robust architectures like YOLO and 

Faster R-CNN, offer a script-agnostic solution by focusing on physical row boundaries rather than 

language-dependent content. Hybrid cascades further balance speed and precision, enabling real-time 

inference while maintaining high detection accuracy. 

Logical Structure and TEDS-S Evaluation: While object detection predicts physical structures, evaluating 

TSR performance requires assessing both structural alignment and content fidelity. Metrics like TEDS-S 

provide a holistic evaluation by comparing detected rows and cells with ground truth, measuring semantic 

correctness alongside spatial accuracy. This makes TEDS-S particularly suitable for assessing multilingual 

row detection, where alignment and content consistency are critical. 

 

Our Methodology 

Figure 3: End-to-End Methodology for Multilingual Row Detection in Tables Using SPRINT, YOLO, 

Faster R-CNN, and OTSL-to-HTML Structural Alignment 

 
Our objective is to accurately determine the structure of an input table image, including both its physical 

layout (rows and columns) and logical structure (cell relationships). The overall design of our proposed 

methodology is illustrated in Figure 2. 

 

Step 1: Logical Structure Prediction 

The first step involves predicting the logical structure of the input table using SPRINT. SPRINT models 

the table as a script-agnostic arrangement of cells, generating a sequence that represents the logical 

layout. The working principles and training details of SPRINT are described in Section 4.3. This logical 
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sequence is represented using the Optimized Table Structure Language (OTSL), which provides a 

compact and well-defined syntax for tables. 

 

Step 2: Physical Structure Estimation 

Next, the physical structure of the table is determined by detecting the rows and columns present in the 

input image. Using a Table Grid Estimator, we identify two object classes: table-row and table-column, 

and estimate the total number of rows (R) and columns (C). The technical implementation of this step is 

detailed in Section 4.4. Accurate row and column detection is critical for validating the logical sequence 

predicted in Step 1 and for downstream reconstruction of the table. 

 

Step 3: OTSL Matrix Alignment 

The predicted OTSL sequence is then aligned with the estimated grid to form a syntactically valid R × (C 

+ 1) OTSL matrix. Padding or trimming techniques are applied to ensure that the sequence length matches 

the grid size. Additionally, the periodicity of the character N is verified, ensuring that every (C + 1)th 

character represents a new row. Misplaced tokens such as L, U, X, or N are corrected to F (representing a 

fundamental table cell). This alignment step serves two key purposes: (i) it produces a valid OTSL matrix 

that can be directly converted into other formats like HTML, and (ii) it implicitly maps each logical cell 

to its corresponding row and column, eliminating the need for extensive post-processing. 

 

Step 4: Conversion to HTML and Tree Representation 

Finally, the validated OTSL matrix is converted into an HTML sequence following the procedure outlined 

in Algorithm 1. For cells spanning multiple rows or columns, the span is computed using the intermediate 

method described in Algorithm 2. This step produces a tree-like representation of the table’s structure, 

suitable for evaluation using metrics such as TEDS-S and for downstream applications like table 

reconstruction or information extraction. 

Through this methodology, our approach combines script-agnostic logical structure prediction with 

accurate row and column detection, ensuring robust multilingual TSR while minimizing post-processing. 

 

Methodologies for Row Detection: A Comparative Study of TATR, YOLO, and Faster R-CNN 

Row detection is a fundamental component of table structure recognition (TSR), which itself plays a 

central role in document intelligence and automated data extraction systems. In structured documents such 

as invoices, financial statements, scientific articles, and multilingual government forms, tables organize 

information into logical segments of rows and columns. While table detection identifies the location of a 

table within a document, row detection focuses specifically on segmenting that table into meaningful 

horizontal units. Accurate row detection ensures proper interpretation of relationships between textual 

elements and preserves the semantic integrity of tabular data. With the advancement of deep learning in 

document analysis, several methodologies have emerged to address row detection, notably Transformer-

based architectures such as TATR, single-stage detectors like YOLO, and two-stage detectors such as 

Faster R-CNN. Each of these approaches reflects a different architectural philosophy and trade-off 

between speed, accuracy, and computational complexity. 

Modern row detection methodologies rely primarily on object detection and transformer-based 

architectures. This section presents an in-depth comparative study of three prominent approaches: 

• TATR (Table Transformer) 

• YOLO (You Only Look Once) 

• Faster R-CNN (FRCNN) 

 

TATR (Table Transformer)  

The Table Transformer (TATR) represents a modern, attention-based approach to row detection. Unlike 

traditional heuristic methods that depend on whitespace analysis, geometric alignment, or line separators, 
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TATR treats row detection as an object detection problem learned directly from annotated datasets. 

Inspired by the Detection Transformer (DETR) architecture, TATR combines convolutional neural 

network (CNN) backbones with Transformer encoders and decoders to model global spatial relationships 

across the entire table image. The CNN backbone first extracts hierarchical visual features from the input 

image, capturing both local textures and high-level structural patterns. These features are then passed to a 

Transformer encoder, which applies multi-head self-attention to learn contextual dependencies between 

different regions of the table. This attention mechanism allows the model to understand alignment patterns, 

row continuity, and structural consistency even in complex layouts with merged cells or missing borders. 

The Transformer decoder introduces learnable object queries, each representing a potential row candidate. 

Through iterative attention between queries and encoded features, the model predicts bounding boxes 

corresponding to individual rows. The final prediction head outputs both bounding box coordinates and 

class probabilities. Training is performed end-to-end using a bipartite matching strategy based on the 

Hungarian algorithm, combined with L1 loss, Generalized Intersection over Union (GIoU) loss, and 

classification loss. Because predictions are directly optimized against ground truth without requiring Non-

Maximum Suppression (NMS), TATR achieves stable and globally consistent detections. Its ability to 

model long-range dependencies makes it particularly effective for multilingual tables and borderless 

layouts. However, this robustness comes at the cost of higher computational requirements and longer 

training times, as Transformer-based architectures demand substantial annotated data such as PubTables-

1M and significant GPU resources. 

 

YOLO (You Only Look Once) 

In contrast, YOLO (You Only Look Once) approaches row detection from the perspective of real-time 

object detection. YOLO is a single-stage detection model that processes the entire image in one forward 

pass, making it highly efficient and suitable for large-scale or time-sensitive applications. When adapted 

for row detection, YOLO treats each row as an object instance. The architecture typically consists of a 

CSPDarknet backbone for feature extraction, followed by a Path Aggregation Network (PANet) neck for 

multi-scale feature fusion, and a detection head that predicts bounding box coordinates, objectness scores, 

and class probabilities. Unlike two-stage detectors, YOLO does not generate separate region proposals; 

instead, it divides the image into grid cells and directly predicts bounding boxes relative to these grids. 

This unified detection pipeline results in fast inference speeds and lower memory consumption. YOLO 

performs well in moderately complex tables and is particularly advantageous when processing high 

volumes of documents in real time. Nevertheless, its grid-based prediction mechanism can struggle in 

dense layouts where rows overlap closely or where bounding boxes vary significantly in scale. Although 

improvements in newer YOLO versions have enhanced multi-scale detection and anchor optimization, 

single-stage detectors may still exhibit slightly lower precision compared to two-stage frameworks in 

highly complex scenarios. 

 

Faster R-CNN (FRCNN) 

Faster R-CNN, a two-stage object detection model, represents a more precision-focused methodology for 

row detection. Its architecture separates the detection process into proposal generation and classification 

stages. Initially, a backbone network such as ResNet-101 combined with a Feature Pyramid Network 

(FPN) extracts multi-scale feature maps from the input image. A Region Proposal Network (RPN) then 

scans these feature maps to generate candidate regions likely to contain objects, in this case, rows. These 

proposals are refined through Region of Interest (ROI) pooling, which extracts fixed-size feature 

representations for each candidate region. In the second stage, classification and bounding box regression 

heads refine predictions and assign row labels. This two-stage refinement process allows Faster R-CNN 

to achieve high localization accuracy and strong robustness to overlapping rows or complex layouts. It 

performs particularly well in multilingual documents and densely structured tables. However, the 
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additional proposal stage increases computational cost and reduces inference speed compared to YOLO. 

Consequently, Faster R-CNN is often preferred in scenarios where accuracy is prioritized over speed. 

When comparing these three methodologies, several distinctions become evident. TATR leverages global 

attention mechanisms to capture structural relationships across the entire table, making it highly robust in 

challenging layouts with merged cells and irregular spacing. YOLO emphasizes speed and efficiency, 

providing competitive accuracy in real-time applications but occasionally sacrificing fine-grained 

localization in dense layouts. Faster R-CNN prioritizes detection precision through its two-stage 

refinement process, achieving strong performance in complex documents at the expense of computational 

efficiency. Evaluation of these models typically relies on metrics such as Mean Average Precision (mAP), 

Intersection over Union (IoU), precision, recall, and F1-score. Publicly available datasets such as 

PubTables-1M, ICDAR Table Competition datasets, and the Marmot dataset are commonly used for 

benchmarking and are suitable for copyright-safe academic research. 

In summary, row detection methodologies have evolved significantly from heuristic segmentation 

techniques to advanced deep learning frameworks. Transformer-based models like TATR represent the 

current research frontier due to their ability to model global contextual relationships through attention 

mechanisms. YOLO remains a practical solution for real-time systems requiring high throughput, while 

Faster R-CNN continues to offer high precision in structured document analysis. The choice among these 

methodologies ultimately depends on application requirements, balancing trade-offs between speed, 

accuracy, scalability, and computational resources. As document intelligence continues to advance, hybrid 

architectures that combine the contextual modeling strength of Transformers with the efficiency of single-

stage detectors may further enhance row detection performance across diverse real-world scenarios. 

 

Evaluation Framework: TEDS-S 

TEDS-S (Tree Edit Distance Similarity—Structure and Content) evaluates both structural alignment and 

textual accuracy. It combines tree edit distance for table structure comparison with content similarity, 

enabling holistic performance evaluation and feedback-driven refinement. 

 

Table 1: TEDS-S Scores and Inference Time on MUSTARD Dataset 

Model TEDS-S Score Inference Time (ms) 

TATR 0.68 36 

YOLOv8 0.85 22 

Faster R-CNN 0.91 83 

 

Figure 4: YOLO-Based Row Detection Pipeline 
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Input table images are processed through a CSPDarknet backbone followed by a detection head to generate 

bounding boxes representing table rows. 

 

Figure 5: Hybrid YOLO–FRCNN Cascade Architecture 

 
 

YOLO performs coarse row detection followed by Faster R-CNN for fine-grained refinement, balancing 

real-time performance and accuracy.  

 

Figure 6: TEDS-S Evaluation Workflow 

 
Structural similarity is computed using tree edit distance and combined with content similarity to generate 

the final TEDS-S score. 

 

Dataset 

To evaluate the effectiveness of our multilingual row detection and TSR framework, we conduct 

experiments on widely used benchmark datasets as well as our newly introduced multilingual dataset, 

MUSTARD. 

Benchmark TSR Datasets 

We utilize three popular large-scale TSR datasets: PubTabNet, FinTabNet, and PubTables-1M, which 

predominantly contain tables extracted from English-language documents. For these datasets, canonical 

subsets with corresponding Optimized Table Structure Language (OTSL) annotations have been released. 

We use these OTSL-based canonical splits for training and validation of SPRINT to ensure consistency 

with prior OTSL-based approaches. 

For PubTabNet, we internally split the original training set into training and validation subsets. The non-

overlapping validation set from PubTabNet is used for reporting comparative performance against existing 

methods. To ensure fair comparison: 

● We evaluate on canonical test sets when comparing with OTSL-based baselines. 

● We use the original test splits when comparing against HTML-based methods. 
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Table 2: Summary of the TSR datasets employed in our experiments. The asterisk (*) denotes evaluation 

on non-overlapping images from the PubTabNet validation set. 

Dataset 

Name 
Version 

Trainin

g 
Validation Testing Simple Complex 

PubTabN

et 

Original 
320000 

68002 *9115 4653 4462 

Canonical – *6942 4636 2306 

FinTabNe

t 

Original 
88441 

10505 10635 5126 5509 

Canonical – 10397 5126 5271 

PubTables

-1M 
Canonical 522874 93989 92841 44377 48464 

MUSTARD - – 1428 662 766 

 

The datasets contain both simple tables (without merged or spanned cells) and complex tables (with at 

least one row-span or column-span cell). This distinction allows us to assess robustness across varying 

structural complexities. 

Detailed dataset statistics, including OTSL token distributions and character-level frequency analysis, are 

provided in the supplementary material. 

MUSTARD: A Multilingual Table Structure Dataset 

To address the limited multilingual coverage of existing TSR benchmarks, we introduce MUSTARD, a 

curated multilingual dataset designed specifically for evaluating script-agnostic row detection and 

structure reconstruction. 

MUSTARD consists of 1,428 cropped and annotated table images collected from multiple document and 

scene-text sources. The dataset includes: 

 

● 1,214 document tables (printed or scanned) across twelve languages, including eleven Indian 

languages—Assamese, Bengali, Gujarati, Hindi, Kannada, Malayalam, Oriya, Punjabi, Tamil, 

Telugu, and Urdu—each contributing approximately 100 tables. 

● 102 Chinese document tables sourced from CTDAR datasets. 

● 214 scene tables in English and Chinese, curated from a subset of the TabRecSet dataset. 

 

Results 

In this section, we report the TEDS-S scores achieved by SPRINT integrated with our proposed table grid 

estimator for multilingual row and column detection. The final output of our framework is an HTML tag 

sequence, enabling direct comparison with benchmark datasets. 

Since PubTabNet, FinTabNet, and PubTables-1M provide ground-truth annotations in HTML format, we 

evaluate structural correctness by filtering out textual content and retaining only the pure HTML tag 

sequences. This ensures that the evaluation strictly measures structural alignment, independent of OCR or 

content recognition performance. For the MUSTARD dataset, the predicted OTSL sequences are first 

aligned and validated using the estimated grid, then converted into HTML tag sequences for consistent 

evaluation. 
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Table 3: Comparison of MTL-TabNet  and the proposed approach on MUSTARD tables across multiple 

languages (scripts) and modalities 

Modality Language 

MTL-

TabNet 

TEDS-

S 

Simple 

MTL-

TabNet 

TEDS-S 

Complex 

MTL-

TabNet 

TEDS-S 

Overall 

Ours 

TEDS-

S 

Simple 

Ours 

TEDS-

S 

Comple

x 

Ours 

TEDS-S 

Overall 

Document 

Tables 

(Printed 

and 

Scanned) 

Assamese 79.39 73.4 76.54 88.09 88.74 88.4 

Bengali 71.68 60.02 61.42 77.24 78.52 78.36 

Gujarati 85.12 76.72 79.63 87.79 81.34 83.58 

Hindi 73.8 76.6 75.04 85.68 88.22 86.81 

Kannada 68.82 66.73 67.2 71.84 79.02 77.34 

Malayala

m 
82.57 79.34 81.07 86.41 85.13 85.81 

Oriya 85.28 78.03 82.84 91.55 85.2 89.41 

Punjabi 65.08 48.63 51.54 86.91 79.65 80.93 

Tamil 81.96 71.88 77.83 94.91 85.87 91.21 

Telugu 85.07 79.28 82.17 93.7 86 89.85 

Urdu 70.94 69.74 70.03 81.39 75.38 76.86 

Chinese 92.43 81.58 86.15 98.11 86 91.1 

Scene 

Tables 

English 76.19 78.01 76.53 88.98 76.14 85.71 

Chinese 69.4 66.65 68.94 88.62 81.96 87.27 

Overall 77.7 71.9 74.07 87.23 82.66 85.19 

 

Across benchmark datasets, our approach demonstrates strong structural consistency, achieving 

competitive and often superior TEDS-S scores compared to prior TSR methods. The integration of YOLO 

and Faster R-CNN for row and column detection significantly improves physical structure estimation, 

which directly enhances logical structure reconstruction. In particular: 

● Accurate row detection reduces structural misalignment in complex tables. 

● Grid-aware OTSL alignment minimizes syntactic inconsistencies. 

● The hybrid detection framework improves robustness across diverse layouts. 

 

On the multilingual MUSTARD dataset, our method shows stable and high TEDS-S performance across 

thirteen languages, including low-resource Indian scripts and Chinese. This validates the script-agnostic 

nature of our row detection strategy, which relies on structural cues rather than language-dependent 

features. 
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Performance was measured using structural precision and recall, OCR accuracy, and TEDS-S, which 

evaluates combined structural and content similarity. 

 

Table 4: YOLOv8: fast, accurate, ideal for multilingual and dense tables. 

 

 

 

 

 

 

 

 

The results demonstrate that YOLO consistently outperforms both FRCNN and TATR across all metrics. 

Its single-stage detection pipeline, combined with a CSPDarknet backbone and PANet neck, enables fast 

and accurate row bounding box predictions, even in dense or overlapping layouts. YOLO effectively 

detects rows in multilingual tables, including complex Devanagari scripts, while maintaining high 

precision and recall. 

 

In comparison, Faster R-CNN, while highly accurate for clear tables, suffers from slower inference speed 

and occasional misclassification of overlapping rows, limiting its scalability. TATR, as a transformer-

based model, benefits from contextual understanding but is sensitive to dense or skewed tables, and 

requires additional processing to handle overlapping row predictions. YOLO’s ability to handle multiple 

row layouts simultaneously makes it a more robust and practical solution for multilingual table extraction. 

Qualitative analysis further highlights YOLO’s superiority: it preserves row integrity in borderless tables, 

correctly handles merged cells and multi-line headers, and maintains OCR accuracy by providing precise 

structural boundaries for content extraction. 

 

CONCLUSION 

In this work, we present a robust framework for multilingual row detection in tables, moving beyond 

transformer-only approaches such as TATR by leveraging the strengths of YOLO and Faster R-CNN 

alongside the SPRINT logical structure predictor. Unlike TATR, which can struggle with dense or 

overlapping rows, YOLO’s single-stage detection pipeline provides faster and more accurate row 

localization, while Faster R-CNN offers high precision for clearer table layouts. Our method combines 

these physical row predictions with grid-aligned OTSL validation to bridge physical and logical structure 

recognition, eliminating complex post-processing steps and ensuring syntactic correctness. 

 

By integrating accurate physical row detection, we demonstrate through TEDS-S evaluation that 

improvements at the structural level directly enhance logical table reconstruction. Experiments conducted 

on PubTabNet, FinTabNet, PubTables-1M, and our proposed MUSTARD dataset show that the 

framework achieves superior structural alignment and maintains high inference efficiency. Notably, 

YOLO consistently outperforms both TATR and Faster R-CNN across multilingual datasets, including 

challenging scripts such as Devanagari, confirming its robustness, scalability, and language-independent 

capabilities. 

 

The framework’s strong performance across thirteen languages demonstrates its suitability for real-world 

document analysis systems, where multilingual and heterogeneous table formats are prevalent. By 

prioritizing accurate row detection through YOLO, our approach sets a new standard for efficient and 

reliable multilingual table extraction, bridging the gap between physical layout understanding and logical 

structure reconstruction. 

Model 

TEDS-S 

Score 

Structural 

Precision 

Structural 

Recall 

Inference 

Speed 

TATR 0.68 0.7 0.65 Medium 

YOLOv8 0.85 0.92 0.9 High 

Faster R-CNN 0.91 0.9 0.89 Low 

https://www.ijtas.com/
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These findings emphasize the value of single-stage object detection frameworks in multilingual table 

analysis and highlight the potential for YOLO-based pipelines in enhancing table reconstruction, OCR 

integration, and downstream document intelligence applications. Future work could explore combining 

YOLO with semantic content validation for end-to-end table extraction, further improving accuracy in 

highly complex and script-diverse documents. 
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