

# Drainage System in Western Rajasthan

**Khushal Prajapat**

Lecturer

Geography

Sariya Devi Ki Gali, Ahore, Jalore, Rajasthan 307029

## **Abstract:**

Western Rajasthan forms a major part of the Indian Thar Desert and is characterized by an arid to semi-arid climate, scanty rainfall, high evaporation rates, and extreme temperature variations. These environmental conditions have given rise to a distinctive and largely underdeveloped drainage system. Unlike humid regions where perennial rivers dominate, the drainage of Western Rajasthan is mainly seasonal, discontinuous, and inland in nature. Most streams do not reach the sea and instead dissipate into sandy plains, salt lakes, or playas. This research paper examines the physiographic controls, types of drainage patterns, major river systems, inland drainage basins, salt lakes, and human interventions influencing the drainage system of Western Rajasthan. The study highlights the challenges faced by this fragile hydrological system and emphasizes the importance of sustainable water management in the region.

**Keywords:** Western Rajasthan, Drainage System, Inland Drainage, Luni River, Thar Desert, Salt Lakes.

## **1. INTRODUCTION**

The drainage system of any region is a direct manifestation of the interaction between its physical environment and human intervention. Factors such as climate, relief, geological structure, soil composition, vegetation cover, and land-use practices collectively determine the nature, density, and behavior of drainage networks. In arid and semi-arid regions, where rainfall is scarce and unevenly distributed, drainage systems tend to be weakly developed, discontinuous, and highly seasonal. Western Rajasthan represents one of the most striking examples of such an environment in the Indian subcontinent. Western Rajasthan includes extensive areas of districts such as Jodhpur, Jaisalmer, Barmer, Bikaner, Nagaur, Jalore, and parts of Churu. This region forms the core of the Thar Desert and is characterized by vast sandy plains, sand dunes, rocky outcrops, and isolated hill systems. The Aravalli Range, running in a northeast–southwest direction, forms a significant physiographic and climatic divide. Acting as a watershed and a barrier to the southwest monsoon winds, the Aravallis greatly reduce rainfall in areas lying to their west, thereby exerting a decisive influence on the development of drainage in Western Rajasthan.

Climatically, the region experiences extremely low and highly erratic rainfall, generally ranging between 100 and 300 mm annually. The monsoon season is short and uncertain, while evaporation rates remain high throughout the year due to intense solar radiation and high temperatures. As a result, surface runoff is limited, and most rainfall either infiltrates the porous sandy soils or evaporates rapidly. These conditions inhibit the formation of perennial rivers and lead to the dominance of ephemeral or seasonal streams that flow only during brief monsoonal spells.

Another distinctive feature of Western Rajasthan's drainage is the prevalence of inland or endorheic drainage basins. Unlike most river systems of India, which ultimately drain into the Bay of Bengal or the Arabian Sea, the majority of streams in Western Rajasthan do not reach the sea. Instead, they terminate in shallow depressions, sandy tracts, or salt lakes, where water evaporates and leaves behind saline residues.

This inland drainage pattern sets Western Rajasthan apart from the humid and sub-humid regions of the country.

The drainage system of Western Rajasthan is not only a geomorphological phenomenon but also a critical determinant of human life and economic activities. Agriculture, settlement patterns, livestock rearing, and traditional livelihoods have evolved in close adaptation to the constraints imposed by limited and unreliable water availability. Over time, human interventions such as water-harvesting structures, canal irrigation, dams, and groundwater extraction have further modified natural drainage processes, sometimes alleviating scarcity and at other times creating new environmental challenges.

In this context, a systematic study of the drainage system of Western Rajasthan is of immense importance. Such an understanding is essential for effective water resource management, sustainable agricultural planning, mitigation of flood and drought hazards, and the conservation of fragile desert ecosystems. As climate change and population pressures intensify, insights into the region's drainage characteristics become even more crucial for ensuring long-term environmental and socio-economic sustainability.

## **2. PHYSIOGRAPHIC AND CLIMATIC CONTROLS ON DRAINAGE**

The drainage characteristics of Western Rajasthan are largely governed by its distinctive physiography and harsh climatic conditions. Together, these factors have shaped a drainage system that is weakly developed, highly seasonal, and largely inland in nature. The physical landscape and climatic regime of the region impose severe constraints on the formation and continuity of surface water channels.

Physiographically, Western Rajasthan is dominated by the vast expanse of the Thar Desert, which consists of diverse landforms such as longitudinal and crescent-shaped sand dunes, sandy plains, interdunal depressions, rocky pediments, and scattered hillocks. These features significantly influence surface runoff patterns. Sand dunes and sandy plains, with their high porosity and permeability, promote rapid infiltration of rainwater, thereby reducing surface flow and limiting the development of well-defined river channels. Interdunal depressions often act as temporary collection zones for rainwater but dry up quickly due to evaporation.

The Aravalli Range, forming the eastern boundary of Western Rajasthan, plays a crucial role in determining both relief and climate. This ancient fold mountain system acts as a major watershed and a climatic barrier. The southwest monsoon winds, which bring heavy rainfall to much of India, lose most of their moisture on the eastern slopes of the Aravallis. Consequently, areas lying to the west receive scanty and unreliable rainfall. This rain-shadow effect is a primary reason for the underdeveloped drainage network in Western Rajasthan.

Geologically, the region is composed of ancient crystalline rocks, sandstones, limestones, shales, and thick layers of unconsolidated sand deposits. The hard crystalline rocks in some areas give rise to short, shallow channels with dendritic drainage patterns, while extensive sandy tracts lack well-defined channels altogether. The dominance of loose, wind-blown sand further obstructs channel continuity, as river courses are frequently buried or obliterated by shifting dunes.

Relief and slope also exert a significant influence on drainage development. The overall gradient of Western Rajasthan is gentle, sloping gradually from the Aravalli Range towards the west and northwest. This low gradient reduces the velocity of flowing water, limiting the erosive power of streams and preventing the formation of long and deep river valleys. As a result, most streams are short, shallow, and discontinuous.

Climatic conditions further restrict drainage development. The region experiences extremely high temperatures, particularly during summer months, leading to very high rates of evaporation. Annual evaporation often far exceeds annual rainfall, resulting in a negative water balance. Even when rainfall occurs, intense evaporation and rapid infiltration ensure that surface water remains available only for a short duration. Consequently, rivers and streams flow briefly during the monsoon and remain dry for the rest of the year.

In combination, these physiographic and climatic factors—arid climate, low and erratic rainfall, high evaporation, sandy terrain, gentle slopes, and geological structure—have produced a drainage system that is sparse, seasonal, and largely endorheic. Understanding these controls is essential for interpreting the spatial distribution, behavior, and limitations of drainage in Western Rajasthan and for devising sustainable water management strategies suited to arid environments.

### **3. NATURE OF THE DRAINAGE SYSTEM**

The drainage system of Western Rajasthan exhibits distinctive characteristics that clearly differentiate it from the well-integrated river systems of humid and semi-humid regions. Owing to arid climatic conditions, low rainfall, and unfavourable physiographic features, the region is dominated by an inland or endorheic drainage system. In such a system, rivers and streams do not ultimately reach the sea; instead, surface water is lost through evaporation, infiltration into the ground, or accumulation in shallow depressions and salt lakes.

One of the most notable features of the drainage system in Western Rajasthan is its seasonal nature. Almost all rivers and streams flow only during the brief monsoon period, when rainfall occurs in short but sometimes intense spells. Outside the monsoon months, riverbeds remain dry and often serve as pathways or grazing grounds. The volume and duration of flow vary greatly from year to year, depending on the intensity and spatial distribution of rainfall, making the drainage highly unreliable.

The rivers of Western Rajasthan are generally characterized by short courses and limited catchment areas. Due to the gentle slope of the land and the proximity of their source regions to their points of termination, streams do not attain sufficient length or energy to carve deep valleys or maintain continuous flow. As a result, river channels are usually shallow, broad, and poorly defined, lacking well-developed banks or floodplains.

Another important characteristic is the frequent disappearance of streams in sandy tracts. As rivers move away from rocky or semi-consolidated surfaces into sandy plains, their channels often become indistinct and gradually fade out. The high permeability of sandy soils allows water to infiltrate rapidly, while shifting sand dunes may block or divert river courses. In many cases, streams end abruptly in interdunal depressions or low-lying basins without forming a visible outlet.

The dominance of playas, salt lakes, and shallow depressions is a defining feature of the drainage system. These inland basins collect runoff during the monsoon season but dry up during summer, leaving behind layers of salt and alkaline residues. Lakes such as Sambhar, Didwana, Pachpadra, and Lunkaransar exemplify this process and highlight the endorheic nature of drainage in the region.

Drainage patterns in Western Rajasthan vary according to underlying geological structures and surface materials. In rocky regions and areas with relatively resistant bedrock, a dendritic drainage pattern is commonly observed, reflecting uniform lithology and gentle slopes. In contrast, in sand dune-dominated areas, drainage tends to be parallel or radial, influenced by dune orientation, wind action, and local relief. These patterns are often temporary and may change over time due to shifting sands and variable rainfall.

Overall, the drainage system of Western Rajasthan is fragile, discontinuous, and highly sensitive to climatic fluctuations. Its inland character and seasonal behavior underscore the challenges of water availability in the region and emphasize the need for careful management of both surface and subsurface water resources.

#### **4. MAJOR RIVER SYSTEMS OF WESTERN RAJASTHAN**

The river systems of Western Rajasthan are limited in number and extent due to arid climatic conditions, low rainfall, and unfavourable physiographic features. Among these, the Luni River system stands out as the most prominent and geographically significant drainage network. Besides the Luni, several minor seasonal streams contribute locally to surface runoff but lack continuity and permanence.

##### **4.1 Luni River System**

The Luni River is the principal river of Western Rajasthan and forms the backbone of the region's drainage system. It originates from the western slopes of the Aravalli Range near Ajmer, close to the Ana Sagar Lake area. From its source, the river flows in a generally south-westward direction, traversing the districts of Jodhpur, Barmer, and Jalore, before finally dissipating into the marshy lowlands of the Rann of Kachchh in Gujarat. The total length of the river is approximately 495 kilometers, making it the longest river system in Western Rajasthan.

The Luni is a seasonal or ephemeral river, with its flow largely restricted to the monsoon months. During periods of good rainfall, the river carries substantial volumes of water, often leading to local flooding in low-lying areas. However, for most of the year, the riverbed remains dry. One of the most distinctive characteristics of the Luni is the progressive increase in salinity of its water downstream. This phenomenon is primarily attributed to high evaporation rates, low discharge, and the presence of saline and alkaline soils along its lower course. As a result, the river water becomes unsuitable for drinking and irrigation beyond certain stretches.

The Luni River is joined by several important tributaries that enhance its drainage network, particularly in the upper and middle reaches. Major tributaries include the Jojari, Sukri, Bandi, and Jawai rivers. These tributaries also originate from the Aravalli and adjoining uplands and are themselves seasonal in nature. Among them, the Jawai River is noteworthy due to the Jawai Dam, which plays a crucial role in irrigation, water supply, and groundwater recharge in parts of the Pali and Jalore districts.

Despite its seasonal nature and salinity issues, the Luni basin holds immense importance for human habitation and agriculture. The river and its tributaries support irrigation through dams, anicuts, and traditional water-harvesting structures such as tankas, johads, and khadins. Settlements have historically developed along its course, adapting their livelihoods to the constraints and opportunities provided by this limited water resource.

##### **4.2 Other Seasonal Streams**

In addition to the Luni River, Western Rajasthan is drained by several minor seasonal streams that originate from the Aravalli Range and local uplands. These streams are short in length and carry water only during brief monsoonal spells. Prominent among them are the Kakni, Sagarmati, Sagi, and the lower reaches of the Bandi River.

The Kakni River, flowing near Jaisalmer, is a typical desert stream that rarely carries water beyond a few days or weeks after rainfall. Similarly, the Sagarmati and Sagi rivers exhibit highly erratic flow patterns and often terminate in sandy tracts or shallow depressions without forming a well-defined outlet. In many cases, their channels are obscured or completely erased by shifting sand dunes.

These minor streams play a limited but locally significant role in recharging groundwater, supporting short-term agriculture, and sustaining vegetation during the monsoon period. However, due to their ephemeral nature and discontinuous channels, they do not contribute to a coherent or integrated drainage network.

In summary, the river systems of Western Rajasthan are characterized by their seasonal behavior, limited reach, and dependence on monsoon rainfall. While the Luni River provides a degree of drainage integration, the overall river network remains sparse and fragile, reflecting the arid environmental conditions of the region.

## **5. INLAND DRAINAGE AND SALT LAKES**

One of the most distinctive and defining features of the drainage system of Western Rajasthan is the widespread occurrence of inland drainage basins and salt lakes. Due to the absence of perennial rivers and the predominance of endorheic drainage, rainwater does not flow toward the sea but instead accumulates in low-lying depressions within the desert landscape. These depressions act as temporary basins that collect runoff during the monsoon season and gradually dry up under intense heat and high evaporation rates.

The formation of salt lakes in Western Rajasthan is closely linked to climatic aridity, low relief, and poor surface drainage. During the monsoon, these basins receive water from surrounding catchment areas through small seasonal streams and sheet runoff. As the water stagnates and subsequently evaporates, dissolved salts are left behind, leading to the gradual accumulation of saline and alkaline deposits. Over time, this process has resulted in the development of numerous salt lakes and playas across the region.

Among these, Sambhar Lake is the most prominent and economically significant. It is the largest inland salt lake in India and has been a major center of salt production for centuries. Other important salt lakes include Didwana Lake, Pachpadra Lake, Lunkaransar Lake, and Phalodi Lake. Each of these lakes varies in size, salinity, and seasonal water availability, reflecting differences in local topography, catchment characteristics, and climatic conditions.

Beyond their economic value, salt lakes exert a considerable influence on local microclimates, soil characteristics, and ecological processes. They support specialized halophytic vegetation and provide habitats for migratory birds and other wildlife during the wet season. However, excessive salt extraction, declining inflow, and climatic variability pose serious threats to the ecological balance of these fragile environments.

## **6. TRADITIONAL WATER MANAGEMENT AND HUMAN INFLUENCE**

In response to chronic water scarcity and unreliable rainfall, the inhabitants of Western Rajasthan have historically evolved indigenous water management systems that reflect deep environmental knowledge and adaptation to arid conditions. Traditional structures such as tankas (underground cisterns), nadis (village ponds), khadins (runoff farming systems), johads (earthen check dams), and baoris (stepwells) were designed to harvest, store, and efficiently utilize rainwater. These systems not only ensured water availability during dry periods but also helped regulate surface runoff and recharge groundwater.

In recent decades, however, large-scale human interventions have significantly altered the natural drainage and hydrological regime of Western Rajasthan. The Indira Gandhi Canal Project (IGCP) stands out as the most transformative development. By bringing Himalayan river water to the arid regions of northwestern Rajasthan, the canal has enabled the expansion of irrigation, agriculture, and human settlements in areas that were previously desert landscapes. While this has improved food security and livelihoods, it has also disrupted natural drainage patterns.

Canal irrigation has led to issues such as waterlogging, soil salinity, and rising groundwater levels in certain command areas. The introduction of non-native crops and changes in land use have further stressed fragile desert ecosystems. Additionally, embankments, roads, and urban infrastructure have obstructed natural drainage channels, increasing the risk of localized flooding during intense rainfall events.

Activities such as urbanization, deforestation in catchment areas, mining, and excessive groundwater extraction have compounded these problems. Over-extraction of groundwater has lowered water tables in many regions, while the loss of vegetation cover has reduced soil stability and increased surface runoff, enhancing erosion and desertification processes.

## **7. ENVIRONMENTAL CHALLENGES RELATED TO DRAINAGE**

The drainage system of Western Rajasthan is highly sensitive to both natural variability and human-induced changes, resulting in a range of environmental challenges. One of the most pressing issues is the increasing frequency of flash floods caused by short-duration, high-intensity rainfall events. Poorly developed and obstructed drainage channels are often unable to cope with sudden runoff, leading to damage to settlements, infrastructure, and agricultural land.

Groundwater depletion is another major concern, driven by unsustainable extraction for agriculture, industry, and domestic use. Declining water tables have reduced the base flow of seasonal streams and increased dependence on deeper and costlier water sources. At the same time, salinization and alkalization of soils are expanding in many areas due to improper irrigation practices and high evaporation, reducing land productivity.

Infrastructure development, including roads, canals, and urban expansion, has frequently disrupted natural drainage pathways, altering flow directions and increasing vulnerability to both floods and waterlogging. Furthermore, climate change is emerging as a critical factor, with projections indicating greater variability in rainfall patterns, longer dry spells, and more intense rainfall events. These changes are likely to further destabilize the already fragile drainage system of Western Rajasthan.

Together, these challenges highlight the delicate balance between natural processes and human activities in arid environments. Addressing them requires integrated watershed management, revival of traditional water-harvesting practices, scientific planning of infrastructure, and climate-resilient strategies tailored to the unique drainage characteristics of Western Rajasthan.

## **8. CONCLUSION**

The drainage system of Western Rajasthan is the outcome of a complex interaction between an arid to semi-arid climate, low and erratic rainfall, gentle regional slope, sandy and porous terrain, and underlying geological structures. These factors have collectively given rise to a weakly developed, seasonal, and predominantly inland drainage system that stands in sharp contrast to the well-integrated and perennial river systems of humid and sub-humid regions of India.

The dominance of seasonal rivers, endorheic drainage basins, and salt lakes defines the hydrological character of the region. The Luni River, as the principal and longest river of Western Rajasthan, plays a central role in regional drainage, supporting human settlements and agriculture despite its seasonal flow and increasing salinity downstream. Alongside the Luni, numerous short-lived streams, playas, and salt lakes complete the hydrological framework, reflecting the constraints imposed by aridity and high evaporation.

Over centuries, human communities have demonstrated remarkable adaptability by developing traditional water-harvesting and management systems suited to the desert environment. Structures such as tankas, nadiis, khadins, johads, and baoris not only ensured water availability but also maintained a balance between surface runoff and groundwater recharge. However, modern interventions—particularly large-scale irrigation projects, urban expansion, and intensive groundwater extraction—have significantly altered natural drainage processes. While these interventions have enhanced agricultural productivity and improved living standards, they have also introduced challenges such as waterlogging, soil salinity, groundwater depletion, and ecological imbalance.

In the context of increasing population pressure and the emerging impacts of climate change, the fragile drainage system of Western Rajasthan faces heightened vulnerability. Extreme rainfall events, prolonged droughts, and rising temperatures threaten to intensify existing hydrological stresses. Therefore, a comprehensive and scientific understanding of the region's drainage characteristics is essential for effective water resource planning, disaster mitigation, and sustainable regional development.

Balancing developmental needs with environmental conservation remains the central challenge. Integrating traditional knowledge with modern scientific approaches, promoting efficient water use, protecting natural drainage channels, and adopting climate-resilient strategies are crucial steps toward safeguarding the future of Western Rajasthan. Ensuring the sustainability of its drainage system is not only vital for desert ecology but also for the long-term socio-economic stability of one of India's most environmentally sensitive regions.

## REFERENCES:

1. Singh, R. L. (1998). *India: A Regional Geography*. National Geographical Society of India, Varanasi.
2. Sharma, H. S. (2004). *Drainage Systems of India*. Concept Publishing Company, New Delhi.
3. Krishnan, M. S. (2010). *Geology of India and Burma*. CBS Publishers & Distributors, New Delhi.
4. Goudie, A. S. (2013). *Arid and Semi-Arid Geomorphology*. Cambridge University Press, Cambridge.
5. Government of Rajasthan (2021). *Water Resources of Rajasthan*. Water Resources Department, Jaipur.
6. Central Ground Water Board (CGWB) (2020). *Ground Water Year Book – Rajasthan*. Ministry of Jal Shakti, Government of India.
7. Singh, S. (2009). *Physical Geography*. Prayag Pustak Bhawan, Allahabad.
8. Thornbury, W. D. (1969). *Principles of Geomorphology*. John Wiley & Sons, New York.
9. Chorley, R. J., Schumm, S. A., & Sugden, D. E. (1984). *Geomorphology*. Methuen, London.
10. Jain, S. K., Agarwal, P. K., & Singh, V. P. (2007). *Hydrology and Water Resources of India*. Springer, Dordrecht.
11. Ahmad, E. (1965). *Physiography of Western Rajasthan*. National Book Trust, New Delhi.
12. Singh, K. N. (1994). *Water Management in the Thar Desert*. Rawat Publications, Jaipur.
13. Mishra, R. P. (2001). *Geography of Rajasthan*. Rawat Publications, Jaipur.
14. Government of India (2018). *National Water Policy*. Ministry of Jal Shakti, New Delhi.
15. Rao, K. L. (1975). *India's Water Wealth*. Orient Longman, New Delhi.
16. Agarwal, A., & Narain, S. (1997). *Dying Wisdom: Rise, Fall and Potential of India's Traditional Water Harvesting Systems*. Centre for Science and Environment, New Delhi.
17. Singh, R. B. (2014). *Environmental Geography*. Springer, Tokyo.
18. Yadav, S. S. (2012). *Desert Environment and Ecology of Rajasthan*. Scientific Publishers, Jodhpur.
19. UNESCO (2012). *Managing Water under Uncertainty and Risk*. World Water Assessment Programme, Paris.

20. Central Water Commission (2019). *Water and Related Statistics*. Government of India, New Delhi.
21. Singh, S., & Singh, R. P. (2011). *Hydrology of Arid and Semi-Arid Regions*. Oxford University Press, New Delhi.
22. Trewartha, G. T. (1968). *An Introduction to Climate*. McGraw-Hill, New York.
23. Pathak, H. (2010). *Geography of Rajasthan*. Hindi Medium Edition, Rajasthan Hindi Granth Academy, Jaipur.
24. Government of Rajasthan (2019). *State Action Plan on Climate Change*. Jaipur.
25. Singh, J. (2006). *Environmental Geography of Rajasthan*. Pointer Publishers, Jaipur.
26. FAO (2011). *The State of the World's Land and Water Resources*. Food and Agriculture Organization, Rome.
27. Singh, A. K., & Kumar, A. (2015). "Groundwater Depletion in Arid Rajasthan." *Journal of Indian Water Resources*, 35(2), 45–58.
28. Mukherjee, A. (2018). *Groundwater of South Asia*. Springer, Singapore.
29. Census of India (2011). *District Census Handbooks: Rajasthan*. Government of India.
30. IPCC (2021). *Climate Change 2021: The Physical Science Basis*. Cambridge University Press, Cambridge.