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Abstract: 

Artificial Intelligence now underpins consumer applications, enterprise systems, and national 

infrastructure through Large Language Models (LLMs), Retrieval-Augmented Generation (RAG), 

and AI Agents. Their rapid adoption, however, raises concerns over energy use, carbon emissions, 

and environmental impact. This review synthesizes scattered research on the sustainability 

challenges of these three paradigms and proposes a comparative framework that highlights both 

inefficiencies and opportunities for greener design. We examine (i) the compute and carbon costs of 

training and inference, (ii) RAG’s potential as a lower-impact alternative to retraining, (iii) the 

energy overhead of agent orchestration, and (iv) emerging eco-efficiency benchmarks. We conclude 

with design patterns, policy directions, and future research priorities for aligning AI innovation 

with sustainable computing. 
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1. INTRODUCTION 

1.1 The Rise of Large-Scale AI 

Over the past five years, Large Language Models (LLMs) have evolved from research curiosities into core 

infrastructure. Systems like GPT-4, Claude, and LLaMA now support search engines, productivity tools, 

customer service platforms, and coding assistants used by millions each day. Their scale has unlocked 

new opportunities for automation but also exposed the resource demands of this technology. Training a 

frontier model requires petaflop-years of computation and produces hundreds to thousands of tons of 

carbon emissions[1]. Once deployed, the greater challenge is inference, which has become the main source 

of long-term energy use as models respond to billions of queries. 

1.2 Retrieval-Augmented Generation as a Partial Solution 

To reduce the inefficiencies of retraining, many systems now use retrieval-augmented generation (RAG). 

Rather than repeatedly retraining models, RAG pipelines draw information from external databases and 

feed it into the model at runtime[2]. This grounds responses in evidence and lessens the need for constant 

retraining. However, RAG is not without cost. Creating embeddings for millions of documents, 

maintaining vector databases, and refreshing them as knowledge changes all require significant resources. 

Its sustainability depends on whether the savings from reduced retraining outweigh the ongoing costs of 

retrieval and storage, a balance that has not yet been fully studied. 

1.3 The Emergence of AI Agents 

The latest development is the rise of AI agents, systems that plan, act, and reason across multiple steps. 

Agents can decompose tasks, call APIs, coordinate with other agents, and reflect on their outputs. This 

flexibility enables new applications but also introduces higher energy demand. A task that once needed 

one model call may now trigger dozens of LLM queries, retrieval operations, and memory updates. Early 
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evidence shows naïve workflows can increase per-task energy use by an order of magnitude, underscoring 

the need for more efficient designs. 

1.4 The Missing System-Level Perspective 

Research on these three paradigms has developed largely in silos. Studies on LLMs emphasize scale and 

accuracy, work on RAG focuses on retrieval quality, and agent benchmarks measure task success. What 

is missing is a broader perspective on environmental impact. Do RAG pipelines actually reduce emissions 

once storage and update costs are considered? Can agents be organized in ways that cut redundancy rather 

than increase it [3]? And what metrics, beyond accuracy, should guide evaluation [5]? 

This review explores these questions by drawing on recent findings and case studies. We argue that 

sustainability should be treated as a core design principle for LLMs, RAG, and agents alike. By bringing 

together scattered evidence and highlighting unresolved challenges, our aim is to outline a path toward AI 

systems that are not only powerful and efficient but also environmentally responsible. 

 

2. BACKGROUND & EXISTING WORK 

2.1 Large Language Models (LLMs) 

The conversation about sustainability in AI often begins with Large Language Models. Training advanced 

systems such as GPT-3 has been estimated to release more than 550 metric tons of CO₂, roughly equal to 

the yearly emissions of 120 cars. Models at the scale of GPT-4 almost certainly consume more, although 

no official figures have been disclosed. 

Training, however, is only part of the story. Once deployed, LLMs process billions of queries each day. 

At this scale, inference becomes the main driver of lifetime emissions, with Google researchers estimating 

it accounts for more than 80 percent. This has shifted attention toward making inference more efficient 

through methods such as distillation, quantization, and hardware optimization [4]. Benchmarking studies 

show striking variation: the most optimized models can be tens of thousands of times more efficient than 

the least, demonstrating that greener AI depends as much on design choices as on raw model size. 

2.2 Retrieval-Augmented Generation (RAG) 

LLMs are powerful but static. Updating them requires costly retraining, which has led to the rise of 

retrieval-augmented generation (RAG). Rather than embedding new knowledge directly into the model, 

RAG systems query external databases at runtime. This grounds outputs in evidence and reduces the need 

for repeated retraining, but it also introduces new costs. Creating embeddings for millions of documents, 

refreshing them as knowledge evolves, and maintaining large vector databases all require significant 

resources. 

When managed carefully, RAG can be more sustainable than retraining. A 2025 medical QA study found 

that a local RAG system using LLaMA-3.1 8B was both more accurate and less energy-intensive than 

domain-specific mini-LLMs, largely because embeddings were updated monthly rather than models 

retrained. The long-term sustainability of RAG depends on balancing the overhead of retrieval with the 

savings from reduced retraining. 

2.3 AI Agents 

The newest paradigm is the rise of AI agents, systems that can plan, act, and coordinate across multiple 

steps. Agents can break down tasks, call APIs, and even collaborate, enabling applications that range from 

research assistants to workflow managers. This flexibility, however, comes with a cost. A task that once 

required a single LLM call can expand into a dozen or more model queries, retrievals, and memory 

updates. Early evaluations suggest that naive workflows may increase per-task energy use by an order of 

magnitude. 

At the same time, agents could also become part of the solution. With smarter orchestration, caching, and 

pruning, they have the potential to cut redundancy and optimize resource use [3]. The open question is 

whether agents can evolve into energy-aware decision makers rather than energy amplifiers, an area of 

research that is still in its early stages. 

2.4 The Knowledge Gap 
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LLMs, RAG, and agents each have their own body of research, but most studies remain siloed, focused 

on model accuracy, retrieval quality, or task success. What is missing is a holistic view of sustainability 

that compares their footprints, shows where they complement or amplify one another, and clarifies trade-

offs at scale. 

This review builds on that gap. By examining these paradigms side by side, we aim to move beyond 

isolated efficiency improvements toward a system-level understanding of green AI, one that recognizes 

how models, retrieval systems, and agents interact in shaping environmental impact. 
 

3. COMPARATIVE ENERGY PROFILES 

3.1 Large Language Models (LLMs) 

The energy footprint of LLMs has two main phases: training and inference. Training frontier systems such 

as GPT-3 or GPT-4 requires weeks of GPU computation, with GPT-3 alone estimated to have produced 

552 metric tons of CO₂ [1]. These costs are substantial but occur only once for each model release. 

Inference, in contrast, runs continuously and now accounts for most of the lifetime emissions. Efficient 

models like Claude-3.7 Sonnet can process a query using about 0.4 Wh, while larger models such as 

LLaMA-70B may require ten times more. Choices in model size, quantization, and batching directly 

influence this footprint. Cooling adds another hidden cost. Mistral reported that a 400-token prompt 

consumed about 45 milliliters of water, which scales quickly when multiplied across millions of queries 

each day. 

3.2 Retrieval-Augmented Generation (RAG) 

RAG lowers retraining emissions by shifting updates to retrieval, but it brings both upfront and ongoing 

costs. Creating embeddings for millions of documents is compute-intensive, and storing and refreshing 

them in vector databases requires continuous energy. 

At runtime, retrieval is cheaper than inference, but overall efficiency depends on database size and how 

often embeddings are updated. In a medical QA study, a LLaMA-3.1 8B RAG pipeline was both more 

accurate and less energy-intensive than fine-tuned mini-LLMs, cutting emissions by 50 to 100 times 

through monthly embedding updates. The sustainability of RAG ultimately depends on careful refresh 

management, since poorly scaled systems can see storage demands outweigh the savings. 

3.3 AI Agents 

Agents add flexibility but can significantly increase energy use. Instead of a single model call, workflows 

may involve 10 to 20 queries along with multiple retrievals and memory updates, raising energy costs 

from about 0.5 Wh to nearly 8 Wh per task. 

However, agents do not have to be wasteful. With caching, pruning, and adaptive model selection, they 

can reduce redundancy and make their calls more efficient. Prototypes such as CarbonCall (2025) have 

shown that agents can shift between smaller and larger models depending on task complexity, cutting 

carbon impact by as much as half [3]. This suggests that agents could evolve into energy-aware 

orchestrators if sustainability is built into their design. 

3.4 Cross-Architecture Comparisons 

Viewed together, the three paradigms reveal contrasting dynamics. LLMs are expensive to train but 

relatively predictable at inference. RAG avoids retraining but depends heavily on storage efficiency. 

Agents expand capabilities but often multiply inference costs. The challenge is not choosing one over the 

others, but integrating them wisely. Lightweight models paired with lean RAG and coordinated by 

efficient agents can balance performance with sustainability, while poorly designed combinations risk 

compounding waste instead of reducing it. 
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Figure 1. Comparative energy profiles of LLMs, RAG, and agents. The figure illustrates how 

training and inference dominate LLM costs, RAG shifts emissions to embedding and storage, and agents 

amplify inference demands unless optimized for efficiency. 

 

 
 

4. METRICS & BENCHMARKING 

4.1 Energy Use per Query 

The clearest measure of efficiency is the energy required to serve a single query, usually expressed in 

watt-hours (Wh). Benchmarks show large variation. Claude-3.7 Sonnet can handle a 400-token query at 

about 0.4 Wh, while LLaMA-70B may require 4 to 5 Wh. At billions of queries each day, these differences 

add up to the energy demand of entire data centers. Hardware also plays a major role, since GPUs, TPUs, 

and other accelerators differ in performance per watt. Software optimizations such as quantization or batch 

serving can further reduce energy use [4]. 

4.2 Carbon Intensity 

Energy use must also be considered alongside carbon intensity. The same 0.4 Wh query produces about 

0.4 grams of CO₂ equivalent on a hydro-powered grid but as much as 6 grams in regions that rely heavily 

on coal. Without location-specific disclosures, comparisons across models can be misleading. 

4.3 Water Usage 

Cooling also adds a hidden footprint. Mistral reported that a 400-token query on its L2 model required 

about 45 milliliters of water. While this may seem minor, the impact becomes significant when multiplied 

across millions of daily requests, particularly in regions facing water scarcity. 

4.4 Storage and Retrieval Costs in RAG 

For RAG, sustainability also includes the cost of creating and maintaining databases. Generating 

embeddings for millions of documents is highly compute-intensive, while indexes such as FAISS or 

Milvus consume about 1 to 3 Wh per gigabyte each month for storage and replication. These are ongoing 

rather than one-time costs, and they grow steadily with the size of the database. 

4.5 Beyond Accuracy: Toward Eco-Benchmarks 

Traditional benchmarks focus only on accuracy and overlook efficiency. A model that produces the right 

answer at ten times the energy cost cannot be considered sustainable. Proposed eco-benchmarks, such as 

measuring joules per correct answer or using composite metrics that integrate energy, carbon, and water, 

would allow fairer comparisons and encourage designs that balance accuracy with efficiency [5]. 

4.6 The Challenge of Transparency 

Transparency remains a major barrier. Although Hugging Face and Mistral have started publishing carbon 

and water figures, most providers still do not. A 2024 survey found that more than 80 percent of models 

lacked any pubic emissions data, which limits accountability and prevents informed decision-making. 
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4.7 Summary 

Metrics are not just technical details but the foundation of accountability. Without them, sustainability 

remains invisible, and with them, it becomes possible to distinguish responsible systems from wasteful 

ones. Establishing consistent eco-benchmarks will be essential for aligning AI with long-term ecological 

goals. 
 

5. GREEN DESIGN PATTERNS 

5.1 Hybrid Inference Architectures 

A practical way to reduce AI’s footprint is through hybrid deployment. Smaller on-device models can 

handle routine tasks, while more complex queries are sent to cloud models or RAG pipelines. This 

approach lowers inference and transmission energy, reduces latency, and improves privacy, showing that 

efficiency and user experience can go hand in hand. 

5.2 Semantic Caching and Pruning 

AI systems often waste energy by repeating work. Semantic caching helps by storing frequent outputs or 

embeddings, while pruning reduces unnecessary retrieval or reasoning. In RAG, this can mean limiting 

retrieval to only a few top documents, and in agents, stopping unproductive loops early. Both approaches 

cut down the total number of operations rather than making individual steps faster. 

5.3 Energy-Aware Orchestration for Agents 

Agents consume the most energy but also offer the greatest control. Adding cost awareness to their 

planning allows them to rely on smaller models for simple subtasks, call larger ones only when needed, 

and avoid excessively deep retrieval. Prototypes such as CarbonCall have shown that adaptive strategies 

can cut emissions by up to 50 percent without reducing accuracy. 

5.4 Carbon-Aware Scheduling 

Not all energy carries the same carbon cost. Carbon-aware scheduling aligns heavy tasks with times or 

regions where energy grids are cleaner, for example running embedding refreshes in wind or hydro-

powered data centers. This approach requires coordination but reduces emissions without changing the 

models themselves. 

5.5 Hardware–Software Co-Design 

Sustainability also depends on aligning software with the right hardware. General-purpose GPUs are 

versatile but not efficient for tasks such as vector search. Specialized accelerators, neuromorphic chips, 

and optical processors can reduce energy use significantly. A truly green design must extend beyond 

software and include the underlying infrastructure. 

5.6 Efficiency as a First-Class Goal 

Together, these patterns reflect an important shift. Efficiency is no longer secondary to accuracy. With 

billions of users, sustainability must be treated as a core design principle. Many of these efficiency 

practices also improve latency, reliability, and trust, showing that greener AI can also deliver better 

performance. 
 

6. POLICY, TRANSPARENCY & INDUSTRY TRENDS 

6.1 The Transparency Gap 

The biggest barrier to sustainable AI is the lack of consistent disclosure. Most companies provide little or 

no information on energy use, emissions, or water consumption. A 2024 survey found that more than 80 

percent of deployed models had no public sustainability data, leaving comparisons to rely on estimates 

rather than evidence. 

6.2 Early Leaders in Disclosure 

A few firms are beginning to change this trend. Mistral AI published a lifecycle audit of its L2 model that 

included training emissions and water use. Hugging Face introduced an emissions tracker to log energy 

during training runs. These examples show that transparency is possible and can create pressure for others 

to follow. 
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6.3 Regulatory Momentum 

Governments are beginning to take action. The EU AI Act may require reporting on resource use for high-

impact systems [6], and states such as Virginia and California have started regulating energy and water 

consumption in data centers. These efforts echo earlier environmental regulations in other industries, 

where voluntary standards often developed into legal requirements. 

6.4 Market Pressure 

Enterprises are also driving change by asking vendors to provide AI sustainability scores along with 

accuracy and latency measures. Some contracts now require carbon reporting as a condition for 

procurement, turning efficiency into a competitive advantage rather than an afterthought. 

6.5 Toward Accountability 

Together, these forces point to a future where the environmental impact of AI can no longer remain hidden. 

Transparency and reporting are likely to become standard, providing the foundation for greener design 

choices and stronger regulatory accountability. 
 

7. FUTURE RESEARCH DIRECTIONS 

7.1 Energy-Aware Agents 

Agents are highly flexible but often energy intensive, optimizing for task success rather than efficiency. 

A key direction for research is to embed energy and carbon budgets into their planning, encouraging them 

to select smaller models or cached results when possible. With eco-reward functions, agents could shift 

from being heavy consumers to active stewards of sustainability. 

7.2 Eco-Benchmarks and Standardized Metrics 

Unlike accuracy leaderboards, there are very few eco-benchmarks that allow systems to be compared 

fairly. Metrics such as joules per correct answer or carbon per successful task, including water use and 

RAG storage costs, would make hidden impacts more visible. Over time, eco-efficiency could become as 

central to evaluation as accuracy itself. 

7.3 Federated and Decentralized RAG 

Most RAG pipelines rely on centralized vector databases, which create storage and transmission costs. A 

greener alternative is federated or decentralized retrieval, where devices or local servers store embeddings 

and use the cloud only when necessary. This approach reduces energy use, strengthens privacy, and aligns 

with the broader move toward edge computing. 

7.4 Hardware Innovation and Co-Design 

Software efficiency must be supported by hardware designed for AI workloads. Specialized accelerators 

for retrieval, neuromorphic chips for reasoning, and optical processors for inference could significantly 

lower energy use per query. Hardware and software co-design, a practice long used in high-performance 

computing, offers a path to achieving the same capabilities with only a fraction of today’s footprint. 

7.5 Integrating Sustainability with Broader AI Goals 

Sustainability should be considered alongside fairness, safety, and transparency. Energy-aware agents 

could also reduce harmful outputs by pruning unnecessary steps, while carbon-aware scheduling may raise 

fairness concerns across regions. This makes sustainability a cross-cutting priority, central to AI alignment 

rather than an afterthough. 

7.6 Summary 

The next decade of research must treat efficiency as a primary objective. Energy-aware agents, eco-

benchmarks, decentralized RAG, and sustainable hardware all point toward a future where AI is scaled 

responsibly, not only for performance but also for the health of the planet. 
 

8. CONCLUSION 

AI’s rapid growth has delivered remarkable capabilities but also rising costs in energy, carbon, and water. 

LLMs are expensive to train and operate, RAG reduces retraining but adds storage and refresh demands, 

and agents expand capabilities while often multiplying inference costs. Each paradigm comes with trade-
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offs, and when combined, they make sustainability a system-wide challenge rather than a problem of 

individual components. 

 

Efficiency can no longer be an afterthought. With billions of daily interactions, even small savings per 

query scales into massive global impact. Eco-benchmarks, transparent reporting, and policy frameworks 

will be essential for holding AI accountable, while market demand is already making sustainability a 

priority in adoption decisions. 

 

The path forward is to design for efficiency from the start: lightweight models paired with lean RAG, 

coordinated by energy-aware agents, supported by specialized hardware, and scheduled with carbon 

awareness in mind. If the last decade of AI was about scaling capabilities, the next must be about scaling 

responsibly, aligning innovation not only with market needs but also with the long-term health of the 

planet. 
 

REFERENCES: 

1. Patterson, David, et al. "Carbon emissions and large neural network training." arXiv preprint 

arXiv:2104.10350 (2021). 

2. Lewis, Patrick, et al. "Retrieval-augmented generation for knowledge-intensive nlp tasks." 

Advances in neural information processing systems 33 (2020): 9459-9474. 

3. Paramanayakam, Varatheepan, et al. "CarbonCall: Sustainability-Aware Function Calling for 

Large Language Models on Edge Devices." arXiv preprint arXiv:2504.20348 (2025). 

4. NVIDIA. (2023). Inference Optimization Techniques for Large Language Models. Technical 

Report. 

5. Henderson, Peter, et al. "Towards the systematic reporting of the energy and carbon footprints of 

machine learning." Journal of Machine Learning Research 21.248 (2020): 1-43. 

6. European Union. (2024). EU Artificial Intelligence Act. Official Journal of the EU. 

 

https://www.ijtas.com/

