

E-ISSN: 2230-9004 • Website: www.ijtas.com • Email: editor@ijtas.com

Method Development, Validation and Simultaneous Estimation of Quinapril and Hydrochlorthaizide in Tablet Dosage Form by Using RP-HPLC

Nagi Reddy. N¹, Rani. B², Ravindar Bairam³, Manjunath SY⁴, Gorantla Nagamallika⁵, Balakrishnaiah.P.⁶

^{1,2,3,4,5,6}Department of Pharmaceutical Chemistry and Analysis, Srikrupa Institute of Pharmaceutical Sciences, velikatta, Kondapak, Siddipet, Telangana-502277.

Abstract:

A simple, accurate, precise method was developed for the simultaneous estimation of the Quinapril and HCTZ in Tablet dosage form. Chromatogram was run through Inertsil ODS column (250mm: 4.6mm, 5μ). Mobile phase containing Buffer & Acetonitrie in the ratio of (45:55) was pumped through column at a flow rate of 0.8ml/min. Buffer used in this method was ortho phosphoric acid Temperature was maintained at 30°C. Optimized wavelength for Quinapril and HCTZ was 210nm. Retention times of Quinapril and HCTZ were found to be 2.17min and 3.4min. % RSD of the Quinapril and HCTZ were and found to be 0.65 and 0.42 respectively. % Recover was Obtained as 99.91 and 100.02 for HCTZ and Quinapril respectively. LOD, LOQ values are obtained from regression equations of Quinapril and HCTZ were 0.67, 2.03 and 0.5, 1.52 respectively. Regression equation of HCTZ is y = 20044x + 4078, and of Quinapril is y = 317877x + 2711 Regression co-efficient was 0.999.

Key Words: HCTZ, Quinapril, RP-HPLC.

INTRODUCTION:

Quinapril is the ethyl ester prodrug of the non-sulfhydryl angiotensin changing over compound inhibitor quinaprilat. Treating hypertension and cardiovascular breakdown is utilized. ACE inhibitors are regularly utilized as a first line treatment in the treatment of hypertension, alongside thiazide diuretics or beta blockers. Angiotensin II chokes coronary veins and is decidedly inotropic, which under typical conditions, would increment vascular obstruction and oxygen utilization. This activity can ultimately prompt myocyte hypertrophy and vascular smooth muscle cell multiplication. Angiotensin II additionally animates creation of plasminogen activator inhibitor-1 (PAI-1), expanding the gamble of thrombosis.1-4 IUPAC name (3S)- 2-[(2S)- 2-[[(2S)- 1-ethoxy-1-oxo-4-phenylbutan-2-yl] amino] propanoyl]-3,4-dihydro-1H-isoquinoline-3-carboxylic corrosive. Quinapril is dissolvable in water (95 mg/ml at 25° C), ethanol (95 mg/ml at 25° C), and DMSO (18 mg/ml at 25° C). Dissolving Point: 120-130° C.

Hydrochlorothiazide is the most commonly prescribed thiazide diuretic. It is indicated to treat edema and hypertension. Hydrochlorothiazide use is common but declining in favour of angiotensin converting enzyme inhibitors. Many combination products are available containing hydrochlorothiazide and angiotensin converting enzyme inhibitors or angiotensin II receptor blockers. IUPAC name 6-chloro-1,1-dioxo-3,4-dihydro-2*H*-1,2,4-benzothiadiazine-7-sulfonamide. Hydrochlorothiazide, USP is a white, or practically white, crystalline powder which is slightly soluble in water, freely soluble in sodium hydroxide solution, in n-butylamine, and in dimethylformamide; sparingly soluble in methanol; insoluble in ether, in chloroform, and in dilute mineral acids.

E-ISSN: 2230-9004 • Website: www.ijtas.com • Email: editor@ijtas.com

Figure 1: Structure of Quinapril

Figure 2: Structure of Hydrochlorothiazide

The writing review uncovered that There are Different logical strategies were done for the assessment of Quinapril and Hydrochlorothiazide as a solitary or joined with different medications in drug measurements Writing study uncovers that the maintenance time for the concurrent assessment of Quinapril and Hydrochlorothiazide is more. Subsequently the current review, we had made an endeavor to foster straightforward, exact, exact, less tedious and with less maintenance time involving RP-HPLC for the synchronous assessment of Quinapril and Hydrochlorothiazide in mass and drug dose structure by RP-HPLC.3-15 To approve the created technique as per ICH rules for the planned logical application i.e., to apply the proposed strategy for examination of the medication in its dose structure.

MATERIALS AND METHODS:

Chemicals and Reagents: HCTZ and Quinapril were Purchased from market. NaH₂PO₄ was analytical grade supplied by Finerchem limited, Orthophosphoric acid (Merck), and Water and Methanol for HPLC (Lichrosolv (Merck).

Equipment and Chromatographic Conditions: The chromatography was performed on a Waters 2695 HPLC system, equipped with an auto sampler, UV detector and Empower 2 software. Analysis was carried out at 210 nm with Inertsil ODS column (250mm: 4.6mm, 5μ) dimensions at 30 °C temperature. The optimized mobile phase consists of Buffer & Acetonitrie in the ratio of (45:55). Flow rate was maintained at 0.8 ml/min.

Preparation of solutions:

Preparation of phosphate buffer solution

1ml of Ortho Phosphoric acid was diluted to 1000ml with HPLC grade water

Preparation of mobile phase:

Methanol, Buffer and Acetonitrile were mixed in the ratio of 65:30:5 and sonicated for 20minutes, Filtered with 0.45μ membrane filter.

Preparations of working standard solution:

Accurately Weighed and transferred 10mg of Quinapril and 12.5mg of Hydrochlorothiazide working Standards into a 10 ml clean dry volumetric flask, add 7ml of diluent, sonicated for 5 minutes and make up to the final volume with diluents. 1ml from the above two stock solutions was taken into a 10ml volumetric flask and made up to 10ml.

Preparation of Sample solution

5 tablets were weighed and calculate the average weight of each tablet then the weight equivalent to 5 tablets was transferred into a 25 mL volumetric flask, 20mL of diluent added and sonicated for 25 min, further the volume made up with diluent and filtered. From the filtered solution 0.5ml was pipeted out into a 10 ml volumetric flask and made upto 10ml with diluent

E-ISSN: 2230-9004 • Website: www.ijtas.com • Email: editor@ijtas.com

Procedure:

20μL of the standard, sample are injected into the chromatographic system and the areas for HCTZ and Quinapril peaks are measured and the %Assay are calculated by using the formulae.

METHOD:

The developed chromatographic method was validated for system suitability, linearity accuracy, precision, ruggedness and robustness as per ICH guidelines.

System suitability parameters: To evaluate system suitability parameters such as retention time, tailing factor and USP theoretical plate count, the mobile phase was allowed to flow through the column at a flow rate of 0.8 ml/min to equilibrate the column at ambient temperature. Chromatographic separation was achieved by injecting a volume of $20~\mu L$ of standard into Inertsil ODS column (250mm: 4.6mm, 5μ), the mobile phase of composition Buffer: ACN (45:55), pH- 3.5 was allowed to flow through the column at a flow rate of 1 ml per minute. Retention time, tailing factor and USP theoretical plate count of the developed method are shown in table 1.

Assay of pharmaceutical formulation: The proposed validated method was successfully applied to determine HCTZ and Quinapril in their tablet dosage form. The result obtained for was comparable with the corresponding labeled amounts and they were shown in Table-2

Validation of Analytical method:

Linearity: Linearity solutions are prepared such that 0.25ml, 0.5ml, 0.75ml, 1ml, 1.25ml, 1.5ml from the Stock solutions of HCTZ and Quinapril are taken in to 6 different volumetric flasks and diluted to 10ml with diluents to get 31.25ppm, 62.5ppm, 93.75ppm, 125ppm, 156.25ppm, 187.5ppm of HCTZ and 25ppm, 50ppm, 75ppm, 100ppm, 125ppm, 150ppm of Quinapril. The results are shown in figure 6 and 7.

Accuracy studies: The accuracy was determined by help of recovery study. The recovery method carried out at three level 50%, 100%, 150% and 50%, 100%, 150% Inject the standard solutions into chromatographic system. Calculate the Amount found and Amount added for HCTZ and Quinapril and calculate the individual recovery and mean recovery values. The results are shown in table 4.

Precision Studies: precision was calculated from Coefficient of variance for six replicate injections of the standard. The standard solution was injected for six times and measured the area for all six Injections in HPLC. The %RSD for the area of six replicate injections was found. The results are shown in table 5.

Ruggedness: To evaluate the intermediate precision of the method, Precision was performed on different day, different analyst, different instrument. The standard solution was injected for five times and measured the area for all five injections in HPLC. The %RSD for the area of five replicate injections was found. The results are shown in table 6.

Robustness: As part of the Robustness, deliberate change in the Flow rate, Mobile Phase composition, Temperature Variation was made to evaluate the impact on the method. The flow rate was varied at 0.3 ml/min to 0.4 ml/min. The results are shown in table 7.

LOD and LOQ: The sensitivity of RP-HPLC was determined from LOD and LOQ. Which were calculated from the calibration curve using the following equations as per ICH guidelines. The results are shown in table 8.

 $LOD = 3.3\sigma/S$ and

 $LOQ = 10 \sigma/S$, where

 σ = Standard deviation of y intercept of regression line,

S = Slope of the calibration curve

E-ISSN: 2230-9004 • Website: www.ijtas.com • Email: editor@ijtas.com

RESULTS AND DISCUSSION

0.00

1.00

Figure 3: Standard chromatogram

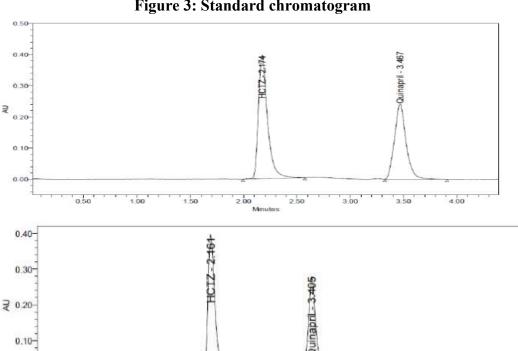


Figure 4: Sample chromatogram

3.00

Minutes

4.00

5.00

2.00

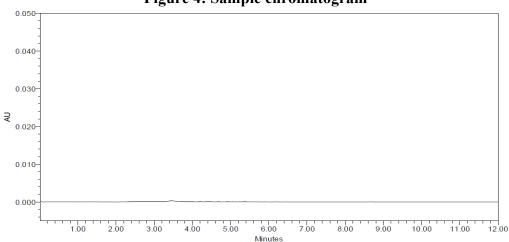


Figure 5: Blank chromatogram

Table 1: System suitability parameters

Property	HCTZ	Quinapril
Retention time (tR)	2.174	3.4
Theoretical plates (N)	3162	5671
Tailine factor (T)	1.58	1.34

E-ISSN: 2230-9004 • Website: www.ijtas.com • Email: editor@ijtas.com

Table 2: Assay results for HCTZ and Quinapril

S. No.	HCTZ %Assay	Quinapril %Assay
1	100.37	99.35
2	99.12	99.97
3	100.71	100.18
4	99.43	100.08
5	99.87	100.51
6	99.93	100.01
AVG	99.92	100.01
STDEV	0.64	0.41
%RSD	0.66	0.43

Table 3: Calibration data of HCTZ and Quinapril

S. No.	Concentration	Response	Concentration	Response
1	0	0	0	0
2	31.25	652246	25	461333
3	62.5	1266237	50	908365
4	93.75	1870328	75	1331720
5	125	2477671	100	1783295
6	156.25	3115360	125	2197122
7	187.5	3800564	150	2722245

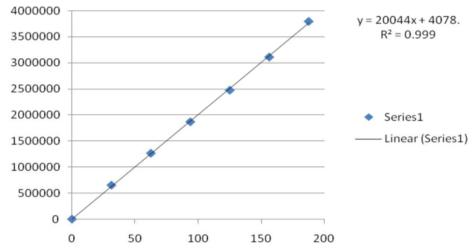


Figure 6: Calibration curve of HCTZ

E-ISSN: 2230-9004 • Website: www.ijtas.com • Email: editor@ijtas.com

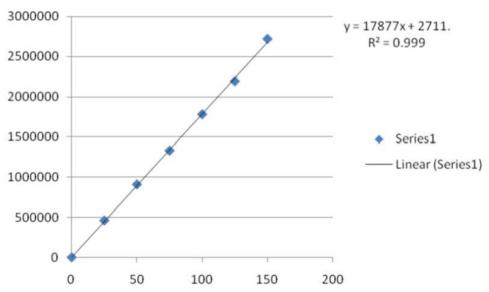


Figure 7: Linearity graph for Quinapril

Table 4: Showing accuracy results for HCTZ and Quinapril

Sample	Amount Taken	Amount Recovered	Recovery (%)	% RSD
	62.5	62.42	99.86	0.80
HCTZ	125	124.67	99.74	0.42
	1 87.5	187.82	100.16	064
	50	50.12	100.26	081
Quinapril	100	99 67	99.67	0 74
	150	150.32	100.22	066

Table 5: Precision results for HCTZ and Quinapril

Sr. No.	HCTZ	Quiuapril
1	2427797	1826455
2	2397495	1837849
3	2436899	1841146
4	2405196	1839899
5	2415722	1847365
Mean	2416374	1838593
SKI Dev.	15762	7646
%RSD	0.64	0.41

E-ISSN: 2230-9004 • Website: www.ijtas.com • Email: editor@ijtas.com

Table 6: Intermediate precision results for HCTZ and Quinapril

Sr. No.	HCTZ	Quinapril
1	2409785	1845775
2	2437795	1833505
3	2409302	1838197
4	2396444	1847274
5	2419232	1852785
Mean	2414496	1843457
Std. Dev.	15321	7454.61
%RSD	0.62	0.41

Table 7: Robustness results of HCTZ and Ouinapril

S.NO	Robustness condition	HCTZ %RSD	Quinapril %RSD
1	Flow minus	0.4	0.4
2	Flow Plus	0.3	0.3
3	Mobile phase minus	0.7	0.7
4	Mobile phase Plus	0.6	0.8
5	Temperature minus	0.7	0.8
6	Temperature Plus	0.3	0.4

Table 8: LOD, LOQ of HCTZ and Quinapril

	HCTZ	Quinapril
LOD (µg/mL)	0.35846	0.084147
LOQ (µg/mL)	1.08848	0.254768

CONCLUSION:

The Developed HPLC method was validated and it was found to be simple, precise, accurate and sensitive for the simultaneous estimation of HCTZ and Quinapril in its pure form and in its pharmaceutical dosage forms. Hence, this method can easily and conveniently adopt for routine quality control analysis of HCTZ and Quinapril in pure and its pharmaceutical dosage forms.

REFERENCES:

- 1. Tsikouris JP, Suarez JA, Meyerrose GE, Ziska M, Fike D, Smith J: Questioning a class effect: does ACE inhibitor tissue penetration influence the degree of fibrinolytic balance alteration following an acute myocardial infarction? J Clin Pharmacol. 2004 Feb;44(2):150-7.
- 2. Goa KL, Balfour JA, Zuanetti G: Lisinopril. A review of its pharmacology and clinical efficacy in the early management of acute myocardial infarction. Drugs. 1996 Oct;52(4):564-88.

E-ISSN: 2230-9004 • Website: www.ijtas.com • Email: editor@ijtas.com

- 3. Altunsoy, palabiyik, uslu. Validation of liquid chromatographic method for Simultaneous determination of quinapril and Hydrochlorothiazide in pharmaceutical dosage Forms. Turk j pharm sci, 2013; 10 (2): 255-262.
- 4. Sujita, gandhi, mani, rekha, pullam, manjusha. A new rp-hplc method for simultaneous estimation of Quinapril and hydrochlorothiazide in Pharmaceutical dosage forms. Wipps, 2013; 2(6): 6220-6234.
- 5. Harini, Subramaniam, Munusamy, Danapal, Saravanakumar; Method Development and Validation of Hydrochlorothiazide and Quinapril in bulk and tablet dosage form by RP-Hplc. Journal of pharmaceutical chemistry, vol 1, no 1 (2014).
- 6. Reema, pinak; development and validation of rp-hplc method for simultaneous estimation of quinapril Hcl and hydrochlorthiazide in combined pharmaceutical formulation. Ijprd, 2013; 5(07): 045 056.
- 7. Vandana, Pankaj, Deepali, Manasi, Rajput, Avinash. Simultaneous Estimation of Quinapril Hydrochloride and Hydrochlorothiazide from Pharmaceutical Formulation by Using UV, IR and RP-HPLC. Asian J. Chem. 2014; 26(13): 3799-3804.
- 8. Arif, Ahsanul, Irin, Kabir, Hossain, Ashraful. Development and Validation of RPHPLC Method for the Simultaneous Estimation of Hydrochlorothiazide and Losartan Potassium in Tablet Dosage Form. Univ. J. Pharm. Sci. 2011; 10(1): 35-42.
- 9. Aruna, Chanukya, Mohan; Simultaneous estimation of losartan potassium and hydrochlorothiazide drugs in solid dosage form by rp-hplc. *Ijmca*, 2012; 2(1): 57-61.
- 10. Gadewar, Jadhao, Shelke, Chandewar. A validated rp-hplc method for simultaneous determination of hydrochlorothiazide and losartan potassium in Pharmaceutical formulation. Ijapa vol. 3 issue 4 (2013) 85-89.
- 11. Gandhimathi and Ravi; Ion pair-hplc method for the simultaneous estimation of quinapril and hydrochlorothiazide in tablets. Indian j. Pharm. Sci., 2009; 71 (3): 311-313.
- 12. Girija, Chatpalliwar, Patil, Surana; validated hptlc method for simultaneous Determination of quinapril hydrochloride and Hydrochlorothiazide in a tablet dosage form. Indian j. Pharm. Sci., 2008; 70 (4): 529-531.
- 13. Reema, pinak; Development and validation of first order derivative method for simultaneous estimation of quinapril hel and Hydrochlorothiazide in combined pharmaceutical formulation. *Int. J. Pharm. Res. Sci.*, 2013; 01(1): 16-25.
- 14. Khan, Kulkarni, Biyani, Khan; Development and Validation of A UV Spectrophotometric Method for the Simultaneous Determination of Quinapril Hydrochloride and Hydrochlorothiazide in Tablet Dosage Form. *IJRBPS*, 2013; 4(3): 795-801.
- 15. Savita, Janhavi; RP-Hplc method for simultaneous estimation of losartan, hydrochlorothiazide and amlodipine in tablet dosage form. *Asian j pharm clin res*, 2014; (71): 137-140.